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Marcus originally derived the Marcus equation to predict Brønsted coefficients for electron-transfer reactions.
However in the literature it is often assumed that Marcus’ result can be extended to predict positions of the
transition state for atom-transfer reactions. In this paper we use ab initio methods to examine the potential
energy surface and transition state of a series of hydrogenolysis reactions of the form H• + CH3CH2Rf CH4

+ •CH2R, with R) H, CH3, CF3, CN, NH2, and C5H6, in order to see if the Marcus equation can be extended
to atom-transfer reactions. The calculations show that the molecular orbitals of the system look “reactant-
like” moving up the potential energy surface toward the transition state, and then switch to “product-like”
moving down to products, in qualitative agreement with what one would expect from the Marcus equation.
However, the curve crossing from “reactant-like” to “product-like” molecular orbitals does not occur at the
saddle point in the potential energy surface. Rather the curve crossing occurs at a point part way down to
products. Also most of the barrier to reaction is associated with rearrangements of the electron clouds due
to Pauli repulsions when the reactants come together and not with the bond destruction and bond formation
processes. These rearrangements are not considered in the Marcus equation. We do not yet know if our
results are special to the reactions here or are general. However, it does appear that some key physics is
missing when one extends the Marcus model to atom- or ligand-transfer reactions. One can represent the
key physics with a modified bond additivity potential, however.

Introduction

In 1969, Polayni and Wong25 were examining the properties
of H2/F2 chemical lasers. They pointed out that in order for a
chemical reaction to produce vibrationally excited species which
could lase, the reaction must have an early transition state. Soon,
several investigators were proposing models to relate the
transition-state position to molecular properties. A few years
before, Marcus1 had examined the Brønsted coefficient,γP, for
electron-transfer reactions. As part of the derivation Marcus
also obtained an expression forøq, the position of the transition
state during the reaction:

whereøq is the position of the transition state in dimensionless
coordinates,∆H is the heat of reaction, andE°a is the intrinsic
activation barrier. Marcus suggested that eq 1 was useful for
electron-transfer reactions butnot atom- or ligand-transfer
reactions.2 Nevertheless after people became interested in the
position of the transition state, Murdoch,21 Sutin,22 and Albey23

asserted that eq 1 could also be used to predict the position of
the transition state for atom- and ligand-transfer reactions in
chemical lasers.
Their analysis was based on the curve-crossing model in

Figure 1. The system goes up the reactant potential, crosses at
the curve crossing, and then goes down the product potential.

So far very little work has been done to critically test the
extension of the Marcus Brønsted formulation to the prediction
of the position state in ligand-transfer reactions. Lee and Masel,3

Yamataka et al.,4 and Shaik and Schlegel5 have used eq 1 to
estimate Brønsted coefficients in atom-transfer reactions. How-
ever, little work has been done to see if the formulation can
predict the position of the transition state for atom- or ligand-
transfer reactions.
In this paper we will use ab initio calculations to estimateøq

at the transition state and compare to eq 1.

Background
First we need a suitable definition to quantifyø. At this point

it is unclear what value oføq is being measured experimentally.* To whom correspondence should be addressed.

Figure 1. Change in the energy of the system as the reaction proceeds,
after Murdoch21 and Marcus.22

øq(Marcus)) 0.5+ ∆H
8E°a

(1)
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Pross and Shaik6 suggest that in principle many different reaction
parameters such as the extent of bond-forming, bond-breaking,
charge transfer, solvation, and others can each be used to define
the reaction coordinate, and one can use the definition ofø to
define a value oføq. The only desired constraint that Pross
and Shaik impose is thatø be 0 at the position of reactants, 1.0
at the position of the products, and vary smoothly in between.
Still, in practice most investigators use the extent of bond-
forming and bond-breaking to define a numeral value atø. For
example if one adopts Pauling’s7 definition of bond order,

wherereq is the equilibrium bond length of the bond anda is a
scaling constant, one can define a reaction coordinate via

wherenf is the bond order of the forming bond, whilenb is the
bond order of the breaking bond at the position of the transition
state. Equation 3 is the definition of the position of the transition
state used most often in the literature. Marcus (personal
communication, 1996, 1997) suggests that this definition is
appropriate for his model.
One can also easily define a satisfactory definition ofø based

on the atomic coordinates:

where subscript b and f denote the breaking and the forming
bonds, respectively. Although other properties of transition state
(such as the extent of bond bending, the amount of electronic
population in certain orbitals, the extent of orbital overlap) can
also be used in the definition of reaction coordinate, none of
them have been used extensively in the context of reaction
coordinate.
We also need to note that alternatives to the Marcus equation

have been suggested in the literature. In 1955, Hammond8

proposed a simple qualitative postulate to relate the position of
the transition state to the energetics of the reaction. Hammond’s
ideas were based on earlier work of Brønsted9 and Leffler.10

According to Hammond’s postulate,øq is given by

whereEa is the activation barrier to the reaction,E°a is the
intrinsic activation energy, and∆H is the heat of reaction. In
the electrochemical literature, Bockris11 has shown that one can
determine the value oføq from

whereSr andSp are the average slopes of the intrinsic reaction
coordinate (IRC) curve on the reactant side and on the product
side, respectively.
From purely mathematical considerations, Miller12 and Ag-

mon13 have independently shown that, assuming certain general
properties of the potential energy profile, the position of
transition state can be given by

Still, eqs 6, 7, and 8 were derived using formulations similar to
those of Marcus. One does not know a priori whether these
formulations are correct.
In the previous literature, there have only been a few attempts

to use ab initio calculations to test eqs 1 and 6-8. Several
years ago, Yamataka4 et al. did Hartree-Fock calculations and
found little agreement betweenøq calculated from the transition-
state geometry and that calculated from eq 1. More recently
Lee and Masel3 used high-level calculations to test eqs 1, 6,
and 7 for an atom-transfer reaction and found reasonable
agreement betweenøq estimated from ab initio calculations and
that from Bockris’ result (eq 6) but little agreement withøq

estimated from the Marcus equation, eq 1, or Miller’s result,
eq 7. In particular, Lee and Masel were examining cases with
late or very late transition states, but the Marcus equation and
Miller’s results predicted early transition states for these cases.
Lee and Masel suggested that the differences arose because the
Pauli repulsions, which are ignored in the derivation of the
Marcus equation, played a key role in determining the position
of the transition state.
In this paper, we will do calculations to see if the Marcus

equation can be used to predict the position of the transition
state for ligand-transfer reactions. We consider the series of
reactions

with R ) H, CH3, NH2, CN, CF3, and C6H5. This set of
reactions was chosen because our previous work has shown that
the Pauli repulsions are particularly strong in the reaction

Therefore, one might think that the reactions in eq 9 would show
interesting deviations from the Marcus result. In this paper, ab
initio calculations have been used to see if the Marcus
formulation applies to this system. We also test Murdoch’s idea
that we can represent the transition state as a curve crossing
between two parabolic potential energy manifolds.

Calculational Methods

Ab initio MO calculations were carried out for all the
molecules and transition states. Geometries of equilibrium
molecules were fully optimized at the second-order Moller-
Plesset perturbation theory (MP2) using a 6-31G(d) basis set
with d-polarization function added to the heavy atoms. To
optimize the geometry of the transition states, polarization
functions (p-type) were also added to the hydrogen atoms due
to the large C-H bond distance at the transition state. In all
the calculations, spin projection14 was used to correct for spin
contamination in open shell structures. Frequency calculations
were performed to check for the imaginary frequencies of the
transition states.
Single-point calculations at fourth-order Moller-Plesset

perturbation theory (MP4SDTQ) and quadratic configuration
interaction (QCISD(T)) were then carried out to determine the
energetics of the molecules and transition states, except for R
) C6H5. These high-level calculations were done using the
6-311G(d,p) basis set. We also did calculations using the G-2
theory,15 where the zero-point energies and other high-level
corrections were included in the calculations. Due to the large

n) exp(-(r - req)/a) (2)

ø(Pauling))
nf

nf + nb
(3)

ø(Geom))
(r* - req)b

(r* - req)b + (r* - req)f
(4)

øq )
(Ea - E°a)

∆H
(5)

øq(Bockris))
Sr

(Sr + Sp)
(6)

øq(Miller) ) 1
2- (∆H/Ea)

(7)

H + C2 H5Rf CH4 + CH2R (8)

D + C2H6 f DCH3 + CH3 (9)
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calculations for R) C6H5, the energetics were determined at
the PMP2/6-31+G(d,p) level.
To determine the slopes of the potential energy profiles as

mentioned in eq 2, intrinsic reaction coordinate (IRC) calcula-
tions16were carried out to trace the mass-weighted reaction path
leading down from the transition state toward the reactants and
products. This was done using a 6-31+G(d,p) basis set. The
slopes at the inflection points of the energy were then used in
eq 2.
We used two different approximations to calculate the

intrinsic activation energies. The first is based on the Hammond
postulate

The second is based on Marcus’ additivity postulate

whereE°AA andE°BB are the activation barriers for the corre-
sponding symmetric bond scissions. In the cases considered
here eqs 10 and 11 gave the same result to within 1 kcal/mol.
All of the calculations in this paper were done with the

GAUSSIAN9217 and GAUSSIAN9418 programs.

Results

Figure 2 shows a potential energy surface for the reaction H
+ C2H6 f CH4 + CH3. In the calculation the hydrogen radical
was assumed to approach the CH3CH2R molecule along the
C-C axis. We have also looked at cases where the radical
attacks perpendicular to the C-C bond or at other angles, but
found that the activation barrier is higher along these other
pathways.
Figure 2 looks standard for a SN2 reaction. There is a small

van der Waals attraction on the reactant side of the molecule
and a fairly symmetric barrier.
Figure 3 shows the geometries of the transition-state structures

calculated at PMP2/6-31G(d,p) level of theory. Table 1 lists
the bond lengths of the forming and the breaking bonds at the
transition states, along with their corresponding equilibrium bond
lengths in the reactants and products. We have also included
the structures optimized using other basis sets wherever possible
for comparison. It is found that in general, with a larger basis

set, the optimized bond lengths are shorter. The p-polarization
function added to the hydrogen appears to be essential when
doing geometry optimization of the transition states. The
optimized structures compare favorably to the available experi-
mental values obtained from the CRC Handbook,19 as shown
in Table 2.
The energetics of the reactions calculated at the MP4(SDTQ)

and QCISD(T) level are summarized in Table 3. It is found
that a higher level of calculation results in more exothermic

Figure 2. Potential energy surface for the reaction H+ C2H6 f CH4

+ CH3 calculated at the MP2/6-31G(d,p) level.

E°AB ) EAB - øq ∆H (10)

E°AB ) 1
2
(E°AA + E°BB) (11)

Figure 3. Geometries of the transition state found in the calculations
reported in this paper.

TABLE 1: Comparison of the Equilibrium Bond Lengths
with the Bond Lengths at the Transition State

transition state equilibrium

R group method/basis sets rCH rCC rCH rCC

H UMP2/6-31G 1.383 1.875 1.095 1.545
UMP2/6-31G(d) 1.383 1.875 1.090 1.526
UMP2/631-G(d,p) 1.369 1.853 1.085 1.523
UMP2)(FULL)/6-31G(d,p) 1.368 1.852 1.090 1.524
UMP2/6-31+G(d,p) 1.367 1.851 1.086 1.525
UMP2/6-311G(d) 1.375 1.871 1.089 1.528
UMP2/6-311G(d,p) 1.364 1.855 1.090 1.529
UMP2/6-311+G(d,p) 1.364 1.852 1.090 1.529
UMP2/6-311++G(d,p) 1.363 1.852 1.090 1.529

CH3 UMP2/6-31G 1.448 1.915 1.095 1.545
UMP2/6-31G(d,p) 1.373 1.847 1.085 1.524
UMP2)(FULL)/6-31G(d,p) 1.372 1.846 1.090 1.525
UMP2/6-31+G(d,p) 1.372 1.845 1.086 1.525
UMP2/6-311G(d,p) 1.367 1.848 1.090 1.528

NH2 UMP2/6-31G 1.489 1.929 1.095 1.510
UMP2)(FULL)/6-31G(d,p) 1.402 1.849 1.090 1.526
UMP2/6-31+G(d,p) 1.400 1.844 1.086 1.490

CN UMP2/6-31G 1.377 1.897 1.095 1.552
UMP2)(FULL)6-31G(d,p) 1.349 1.838 1.090 1.530
UMP2/6-31+G(d,p) 1.348 1.837 1.086 1.531

CF3 UMP2/6-31G 1.430 1.910 1.095 1.544
UMP2)(FULL)/6-31G(d,p) 1.363 1.845 1.090 1.523
UMP2/6-31+G(d,p) 1.365 1.851 1.086 1.525

C6H5 UMP2/6-31+G(d,p) 1.368 1.832 1.086 1.53

TABLE 2: Geometries of Selected Molecules, Selected at
UMP2)(FULL)/6-31G(d), Compared with Established
Experimental Values from the CRC Handbook

molecule structures optimized value exptl values

CH3 RCH 1.078 1.08
CH4 RCH 1.090 1.0870
C2H6 RCC 1.524 1.5351

RCH 1.093 1.0940
∠CCH 111.2 111.17

C3H8 RCC 1.525 1.532
RCH 1.096 1.107
∠CCC 112.4 112

C2H5NH2 RCN 1.464 1.471a

RNH 1.019 1.010a

C2H5CN RCN 1.179 1.159b

C2H5CF3 RCF 1.353 1.332c

C2H5(C6H5) RCC(aromatic) 1.398 1.399d

a Values from methylamine, CH3NH2. b Values from acetonitrile,
CH3CN. c Values from fluoroform, CHF3. d Values from benzene,
(C6H5).
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heats of reactions and lower activation energies. This is mainly
due to the fact that the inclusion of a higher level of correlation
energies stabilizes the transition state and the product radicals
more than the reactants.
Figure 4 shows the results of the IRC calculations. In an

IRC calculation, the transition state is arbitrarily set to zero on
the reaction coordinate and the reaction coordinate is normalized
so that the reactants are toward the negative direction while the
products are toward the positive direction. The slopes of the
potential energy curves were determined and the values were
used in eq 2 to calculate the positions of the transition state.
A summary of the positions of the transition state calculated

from various equations described earlier is provided in Table
4. The ab initio calculations show that the reactions considered
here all have late transition states (øq ∼ 0.5-0.54); however,
the Marcus equation and Miller’s equation predict an early
transition state (øq ∼ 0.39-0.46). Bokris’s method predictsøq

of 0.55-0.59, i.e., later transition states than the ab initio
calculations.
Figure 5 shows the actual transition-state position as a

function of∆H/E°a. The lines are the prediction of eqs 1, 7, 21,
and 11, while the points are the ab initio calculations. We
included both the forward and reverse reactions to get a
consistent picture. Generally, there is little correlation between
the Marcus equation and Miller’s equation and the ab initio
results. Equations 21 and 22, which we will discuss later in
the paper, fit much better, however.

Discussion

It is interesting to try to understand why the deviations from
the Marcus equation exist. Marcus, Albey, and Murdoch
provide several different derivations of the Marcus equation.
However, the one that is the most relevant to the results in this
paper is Chen and Murdoch’s23 derivation based on the bond
additivity model. Recall that in the bond additivity model one
calculates theV(rCH, rCC), the potential energy surface for
reaction 8, from

whererCH andrCC are the lengths of the C-H and C-C bonds;

∆ECC(%CC) is the change inECC(%CC), the energy of the C-C
bond that breaks during the reaction;∆ECH(%CH) is the change
in ECH(%CH), the energy of the C-H bond that forms during
the reaction;%CH and%CC are the Pauling bond orders of

TABLE 3: Total Energies of the System Calculated at Various Levels of Theory

energies (hartrees)

R group level of calculation H C2H5R H--CH3--CH2R CH4 CH2R Ea (kcal/mol) ∆H (kcal/mol)

H PMP2/6-31G+(d,p) -0.499 81 -79.570 89 -80.007 25 -40.379 23 -39.709 17 39.81 -11.11
UMP4(SDTA)/6-31G+(d,p) -0.499 81 -79.614 52 -80.047 94 -40.405 03 -39.730 77 41.66 -13.47
QCISD(T)/6-31G+(d,p) -0.499 81 -79.615 79 -80.052 58 -40.405 89 -39.732 24 39.55 -14.14
G2 theory -0.500 00 -79.630 86 -80.071 31 -40.410 88 -39.745 09 37.37 -15.76

CH3 PMP2/6-31G+(d,p) -0.499 81 -118.766 05 -119.204 40 -40.379 23 -78.905 07 38.56 -11.57
UMP4(SDTQ)/6-31G+(d,p) -0.499 81 -118.827 27 -119.262 63 -40.405 03 -78.944 59 40.44 -14.14
QCISD(T)/6-31G+(d,p) -0.499 81 -118.828 79 -119.267 43 -40.405 89 -78.946 63 38.39 -15.01
G2 theory 0.500 00 -118.855 80 -119.300 72 -40.410 88 -78.969 25 34.56 -15.27

NH2 PMP2/6-31G+(d,p) -0.499 81 -134.786 17 -135.288 48 -40.379 23 -94.935 76 36.08 -18.20
UMP4(SDTQ)/6-31G+(d,p) -0.499 81 -134.841 86 -135.281 20 -40.405 03 -94.969 35 37.95 -20.52
QCISD(T)/6-31G+(d,p) -0.499 81 -134.842 89 -135.285 76 -40.405 89 -94.971 26 35.73 -21.62
G2 theory -0.500 00 -134.894 57 -135.340 47 -40.410 88 -95.018 58 33.95 -21.89

CN PMP2/6-31G+(d,p) -0.499 81 -171.601 75 -172.043 05 -40.379 23 -131.746 10 36.71 -14.92
UMP4(SDTQ)/6-31G+(d,p) -0.499 81 -171.660 86 -172.097 37 -40.405 03 -131.777 87 39.72 -13.95
QCISD(T)/6-31G+(d,p) -0.499 81 -171.657 59 -172.099 87 -40.405 89 -131.783 18 36.10 -19.88
G2 theory -0.500 00 -171.747 62 -172.193 98 -40.410 88 -131.869 46 33.66 -20.53

CF3 PMP2/6-31G+(d,p) -0.499 81 -416.017 15 -416.454 79 -40.379 23 -376.148 52 39.01 -6.77
UMP4(SDTQ)/6-31G+(d,p) -0.499 81 -416.084 50 -416.519 33 -40.405 03 -376.193 90 40.78 -9.18
QCISD(T)/6-31G+(d,p) -0.499 81 -416.081 22 -416.519 16 -40.405 89 -376.191 29 38.83 -10.14
G2 theory -0.500 00 -416.358 89 -40.410 88 -376.464 98 -10.65

C6H5 PMP2 -0.498 23 -309.891 99 -310.324 86 -40.365 95 -270.059 02 41.01 -21.81

V(rCH, rCC) ) ∆ECC(%CC)+ ∆ECH(%CH)+
VPauli(rCH, rCC) (12)

Figure 4. Energy of the reaction in Figure 2 plotted in intrinsic reaction
coordinates.
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the C-H and C-C bond, respectively; andVPauli(rCH, rCC) is
the Pauli repulsion, which keeps the reactants apart. Chen and
Murdoch23 showed that ifECCandECH are parabolic and ifVPauli
is small and constant, then the Marcus equation, eq 1, follows
directly.
One can calculateECC and ECH exactly from ab initio

calculations for isolated methane and ethane molecules.V(rCH,
rCC) is available from Figure 2. VPauli can then be calculated
exactly from eq 12.
Figure 7 shows a plot ofECH andECC as a function of the

bond orders of the C-H and C-C bonds. The plots look as
expected in both cases. The bond energy increases rapidly at
small bond orders and then levels off at bond orders close to 1.
Such a result is typical of what one would expect for a species
that forms only a single bond.
What is surprising though is what happens when one plugs

the numbers from Figure 7 into eq 12. Figure 8 shows a plot
of the various terms in eq 11 for a reaction that follows the
minimum energy reaction pathway for the reaction in Figure 2.
Notice that in the initial part of the reaction the sum ofECC and
ECH actually decreases as the reaction proceeds; that is, we get
more energy back from forming the hydrogen-carbon bond than
we lose in breaking the carbon-carbon bond. Note that
according to Figure 6, it does not cost much energy to stretch
the C-C bond slightly, and according to Figure 7, one gains
considerable energy in forming a small fractional C-H bond.
The result is that the first two terms in eq 11 produce a net
attraction between the hydrogen and the ethane. In contrast, in
the literature it is usually assumed that the sum of∆ECC and

∆ECH produces a repulsive interaction and therefore a barrier
to the reaction.

Our calculations show that in our case there is no barrier from
∆ECC and∆ECH. Rather the main barrier arises fromVPauli. In
the previous literature people mentionVPauli when they are

TABLE 4: Comparison of the Transition-State Positions
Calculated by a Variety of Methods

R group
øq

(Bockris)
øq

(Marcus)
øq

(Miller)
øq

(Pauling)
øq

(Geom)

H 0.59 0.46 0.42 0.54 0.54
CH3 0.58 0.46 0.42 0.53 0.53
NH2 0.55 0.44 0.38 0.51 0.51
CN 0.61 0.44 0.39 0.54 0.54
CF3 0.59 0.47 0.44 0.54 0.54
C6H5 0.45 0.39 0.52 0.52

Figure 5. Comparison of the values oføq estimated from eq 3 with
those estimated from the Marcus equation, eq 1, and the new model,
eqs 21 and 22. The points are the ab initio calculations. The lines are
the predictions of the various models.

Figure 6. Plot of the activation barriers predicted by the Marcus
equation and ab initio calculations as a function of the heat of reaction.

Figure 7. Plot of the energy of the C-C bond in ethane and the C-H
bond in methane as a function of the Pauling bond order of the bond.
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discussing barriers to reaction, but usually assume thatVPauli is
small and Morse-like. However in our case,VPauli is huge.
PhysicallyVPauli is associated with the rearrangement of the

outer electrons before bonds begin to break. During reaction
9, an incoming hydrogen approaches an ethane along theC3V
axis of the ethane, as shown in Figure 3. When the reactants
first come together, there is an electron-electron repulsion
between the electron on the incoming hydrogen and the electrons
on the hydrogen on the methyl group. That repulsion makes
VPauli large.
It is interesting to look at a molecular orbital diagram to see

how the Pauli repulsions arise. People usually do not present
orbital diagrams in Hartree-Fock (HF) type calculations due
to a uniqueness problem. If two occupied states have the same
symmetry, then any sum of the two orbitals also satisfies the
Shroedinger equation. As a result in general, one cannot define
the orbitals uniquely in HF calculations. Nevertheless, one can
create unique orbital diagrams, if one has a very symmetric
system so that only a few states have the same symmetry, and
then one uses core potentials and other tricks to get unique
diagrams.
In our case, there were only three A1g orbitals in the problem,

and we could get a unique orbital diagram by maximizing the
electron density in the bonds. More details on how one gets a
unique diagram are given in Lee and Masel.20

Figure 9 shows a plot of the energies of the various MOs of
hydrogen and ethane, calculated using a Mullikin state decom-
position ignoring the core states. Ethane hasD3d symmetry. In
ethane the 3A1g, 2A1g, 2A2g, 1Eu, 3A1g, and 1Eg states are
occupied, while the 3A2u and higher are empty. Hydrogen has
a single occupied 1s orbital and some empty 2s and 2p states.
When the hydrogen first approaches the ethane, the main

interaction is between the 1s orbital in the hydrogen and the
3A1g orbital in the ethane. There is a bonding state which we
will label 3A1g+1s and an antibonding state which we will label
3A1g-1s. Figure 9 shows the energy level we calculated for
the 3A1g+1s and the 3A1g-1s states using the Mullikin state
decomposition. The calculation was done for a case where the
incoming hydrogen was still 2 Å away from the carbon. In
this case the 3A1g+1s bonding level of the system has only
been stabilized by 0.02 hartrees. One does not want to
overinterpret these changes due to the well-known uniqueness
problem mentioned above. Still there is a 28 kcal/mol repulsive
interaction, which is surprising at such a small reaction
coordinate.

Figure 10 shows how the 3A1g-1s state changes during the
reaction. The 1s state starts out spherical, while the 3A1g state
starts out withC3V symmetry. There is a completely symmetric
center lobe and two outer lobes. The outer lobes actually have
3-fold symmetry, but if you view them in cross section along
the plane of one of the C-H bonds, the outer lobes look kidney
shaped, with more electron density along the C-H bond in the
plane of the paper than between the C-H bonds above and
below the paper.
Now when the reaction proceeds, the 3A1g and 1s orbitals

significantly distort. The left lobe in the 3A1g orbital shrinks,
while the hydrogen 1s orbital changes shape significantly.
Notice that much of the orbital distortion occurs at small Pauling
bond orders. For example, Figure 9b is a case where the
incoming hydrogen atom is 2 Å away from the carbon. When
the C-H is 2 Å away from the carbon, the C-H bond has a
Pauling bond order of only 0.05, while the carbon-carbon in
the ethane still has a bond order of 0.95. However, the 1s orbital
in the hydrogen and the leftmost lobe of the 3A1g orbital on the
ethane have distorted significantly. Energetically, there is a net
repulsion of almost 30 kcal/mol. Interestingly, the center lobe
of the 3A1g orbital (i.e., the carbon-carbon bond) has hardly
changed. Physically the electron in the incoming hydrogen atom
repels the electrons in the CH3 group. This produces a
significant Pauli repulsion even before the carbon-carbon bond
scission begins.
Similarly, at the end of the reaction, there is a Pauli repulsion

between the reactants that occurs after all of the bonds in the
system have reached their equilibrium bond lengths. Figure
10 shows an orbital interaction diagram for that case. A planar
methyl radical has electrons in the 2A1, 1E′, and 1A2′′ states,
while the methane has electrons in the 2A1 and 1T2 states. The
1T2 states split into an A2 state and two E states inC3V

symmetry. When the methyl radical reacts with the methane,
the 2A1 state in the methyl radical reacts with the 2A1 state in
the methane to produce a bonding and antibonding pair with
energies similar to those one would expect. Similarly the E
states on the methyl interact with the E states on the methane
to form a bonding and antibonding pair. The A2 states on the
methyl group and that on the methane also interact to form a
bonding and antibonding pair. However, when we calculate
the energies for a situation where there is a very long carbon-
carbon bond, the bonding (A2+T1) state lies well above the T1
state in methane. The result is a substantial Pauli repulsion.
Figure 10g shows an orbital diagram for that case. Notice

that the molecular orbitals in the methyl group and methane
are significantly distorted, yet the electron density between the
carbon and the hydrogen has hardly changed, and there is no
evidence for a bonding interaction between the carbons. In this
example, the Pauling bond order for the C-H is still 0.98 and
the Pauling bond order for the carbon-carbon is only 0.1.
Physically the electrons on the methyl are being repelled by
the electrons on the hydrogens in the methane; this produces a
large orbital distortion before bond scission begins.
There is another interesting detail in Figure 10. Focus for

the moment on the center lobe on the 3A1g state on ethane.
Notice how the center lobe distorts. The lobe starts out
symmetric and provides a continuous bond between the two
carbon atoms in the ethane. The lobe distorts, but even atø )
0.3, the lobe bridges between the two carbons, implying that
there is still an intact carbon-carbon bond. However, there is
an important change betweenø ) 0.31 andø ) 0.73. Atø )
0.73 the lobe no longer extends from one carbon to the next.
Rather, there is a node between the two carbons, which implies

Figure 8. Plot of the various terms in eq 11 as the reaction proceeds.
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that there is an antibonding interaction between the two carbons.
That antibonding interaction grows as the reaction proceeds.
Similarly, the hydrogen-hydrogen bond is antibonding at the
reactants and then switches to being bonding at the products.
Figure 11 shows a blow up of the transition between “reactant-
like” and “product-like” molecular orbitals. Interestingly, the
switch in the character of the C-H and C-C bonds occurs at
ø ) 0.56 (i.e., a point later than the transition state).
Now it is interesting to compare these results to the

predictions of the Marcus model and Miller’s results. Recall
that Murdochs’ and Albey’s extension of the Marcus equation
to atom-transfer reactions assumes that the reaction starts going
up a “reactant-like” curve and then switches at a curve crossing
and goes down a “product-like” curve as indicated in Figure 1.
Our results in Figure 10 show that the MOs start out “reactant-
like,” with an intact C-C bond. However, during the course
of the reaction the MOs switch to “product-like” MOs with an
intact C-H bond. Interestingly, the transition state (i.e., the
saddle point on the potential energy surface) does not correspond
to the curve crossing. Rather the saddle point on the potential
energy surface occurs atø ) 0.547, while the curve crossing
occurs atø ) 0.56.
The other key piece of physics, which is ignored when one

tries to extend the Marcus model to atom-transfer reaction, is
that there are big orbital distortions before the reaction begins.
Recall that atø ) 0.05 the energy of the system has gone up
by 28 kcal/mol. Yet Figure 10b shows that the carbon-carbon
is largely intact. Figure 8 suggests that the bond distortions
are producing a barrier of more than 50 kcal/mol. This barrier
is ignored in the Murdoch extension of the Marcus equation to
atom- and ligand-transfer reactions. Consequently, Marcus’
equation does not correctly predict either the energy or the value
of ø at the transition state for ligand-transfer reactions.
Another way to look at this result is that the basic assumption

in extending the Marcus equation to atom-transfer reactions,

i.e. that the energy looks parabolic in the reaction coordinate,
does not work for atom- or ligand-transfer reactions. When
one assumes that the system follows a parabolic potential inø,
one is in effect assuming that there are only small variations in
the energy of the system until one starts to stretch the various
bonds, i.e. dE/dø ) 0 at the reactants and products, and dE/dø
grows as one stretches the bonds. This might be true for a
simple electron-transfer reaction. However, in the cases con-
sidered in this paper, dE/dø is large near the reactants and
products and decreases moving toward the transition state. This
is exactly the opposite of what the Marcus equation assumes.
Consequently, the Marcus equation does a poor job in predicting
the position state for atom-transfer reactions.
Now, while that is probably a surprising result to many

people, perhaps it should not be. After all, Marcus2 showed
that eq 1 would not be expected to work for atom-transfer
reactions. People use eq 1 anyway, but it is not surprising that
it does not work considering that Marcus’ derivation is not
appropriate for atom-transfer reactions.

A New Model

One can derive a formulation that works based on Polayni
and co-workers24 extension of the London-Eyring-Pauling
potential. According to Polayni and co-workers, one can
approximateV(rCH, rCC), the potential energy surface for a
ligand-transfer reaction, as the sum of the Morse potential plus
a repulsive term due to the Pauli repulsions, i.e.

wherewCH andwCC are the bond energies of the C-H and C-C
bonds,rCH andrCC are the lengths of the C-H and C-C bonds,
rCC,equandrCH,equare the equilibrium bond lengths,R1 andR2

Figure 9. Plot of the change in the orbital energies as the reaction proceeds calculated with the Mullikin orbital decomposition.

V(rCH, rCC) ) wCH{exp(R1(rCH,equ- rCH)) - 1}2 - wCH +

wCC{exp(R2 (rCC,equ- rCC)) - 1}2 - wCC + VPauli (13)
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are constants, andVPauli is the strength of the Pauli repulsion.
For the derivation here it is useful to approximate the Pauli
repulsion as a simple exponential:

whereV0, R3, andR4 are constants. Combining eqs 13 and 14
and substituting the Pauling bond order for the C-H and C-C
bonds into the equation yields

wherenCH and nCC are the Pauling bond order for the C-H
and C-C bonds and

In our examplepCC andpCH are approximately 1.0, whileqCC
andqCH are less than 1; that is the Pauli repulsion starts before
bond formation.
Figure 12 shows a plot of the potential energy surface

calculated from eq 15. Figure 12 looks quantitatively similar
to the potential energy surface in Figure 2, which suggests that
the approximation in eq 15 does a reasonable job of fitting the
potential energy surface.
Equation 15 also does a reasonable job of fitting the results

in Figure 7. In particular the sum of the first two terms in eq
15 decreases as the reaction proceeds. The actual bond energy
decreases. There is a barrier only because of the last term in
eq 15, i.e. the Pauli repulsion.
One can derive an equation fornCH

q andnCC
q , the bond order

at the saddle point in Figure 11, by setting dV/dn ) 0 and
solving, the result is

with

If pCC ) pCH ) 1, the position of the transition state becomes

Similarly the position of the transition state for the reverse

reaction becomes

Figure 13 comparesøq calculated from the Marcus equation,
eq 1, toøq calculated from eqs 21 and 22. Notice that when
qCC ) qCH ) 1.0, the behavior looks quite like that predicted
by the Marcus equation. In particularøq shifts monotonically
as∆Hr changes. The slope is slightly different than predicted
from the Marcus equation, but the differences are small.
However, whenqCC ) 0.77, the results change. The Pauli

repulsions shift the transition state toward the methane product.
There is a subtlety created by the definition oføq. Notice, that
if we run the forward reaction

the transition state shifts toward the methane. Methane is the
product soøq is increased. However, if we consider the reverse
reaction

VPauli) V0exp(-R3rCH - R4rCC) (14)

V(rCH, rCC) ) wCH((nCH)
pCH - 1)2 + wCC((nCC)

pCH - 1)2 -

wCH - wCC + Vp(nCH)
pCHqCH(nCC)

pCHqCH (15)

pCH ) R1a

pCH ) R2a

qCH )
R3

R1
(16)

qCH )
R4

R2

Vp ) V0exp(R3rCH,equ+ R4rCC,equ)

(nCC
q )pCC )

DCC - 1

DCCDCH - 1
(17)

(nCH
q )pCH )

DCH - 1

DCCDCH - 1
(18)

DCC )
qCCVp
2wCC

nCC
pCC(qCC-1)nCH

pCH(qCH-1) (19)

DCH )
qCHVp
2wCH

nCC
pCC(qCC-1)nCH

pCH(qCH-1) (20)

øF
q )

nCH
q

nCC
q + nCH

q
)

(DCH - 1)

DCH + DCC - 2
(21)

Figure 10. Changes in the 3A1g-1s orbital as the reaction proceeds
calculated as described in the text.

øF
q )

nCC
q

nCC
q + nCH

q
)

(DCC - 1)

DCH + DCC - 2
(22)

H + CH3Rf HCH3 + R

HCH3 + Rf H + CH3R (23)
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we still shift the transition state toward methane. In this case
methane is the reactant, so by definitionøq is decreased. In a
more general wayøq is not a unique function of∆H/E°A.
Insteadøq changes according to whether we are considering
the forward or reverse reaction.
Interestingly, we observe the same things in our ab initio

calculations. Figure 5 compares the position of the transition
state calculated from eqs 21 and 22 to those from the ab initio
calculations. Notice that the ab initio results fall into two

clusters, just as we expect from eqs 21 and 22. Equations 21
and 22 fit the ab initio calculations much better than the Marcus
equation. Clearly, then, one can get a reasonable fit from the
data including the Pauli repulsions into the model.

Conclusions
In summary then, we find that the Marcus equation does not

do a good job of predicting the position of the transition state
for ligand-transfer reactions. The Marcus equation considers
the energies associated with the formation and destruction of
bonds, but not the Pauli repulsion, which occurs before bond
formation begins. In the reactions considered here, the Pauli
repulsions of these bonds play a dominant role. We also showed
that if one explicitly considers the Pauli repulsions, one can
derive an equation that fits the data. The conclusion from our
study is that Pauli repulsions are quite important in atom- and
ligand-transfer reactions and so one must consider them to get
a suitable model.
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