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Ab Initio Tests of the Marcus Equation for the Prediction of the Position of the Transition
State for the Reaction H+ CoHsR — CH4 + CH2R with R = H, CH3, NH,, CN, CF3;, and

CeHs

Introduction

In 1969, Polayni and Wori§were examining the properties
of Ha/F, chemical lasers. They pointed out that in order for a
chemical reaction to produce vibrationally excited species which
could lase, the reaction must have an early transition state. Soon,
several investigators were proposing models to relate the
transition-state position to molecular properties. A few years
before, Marcushad examined the Brgnsted coefficieps, for
electron-transfer reactions. As part of the derivation Marcus
also obtained an expression fgr the position of the transition
state during the reaction:

wherey* is the position of the transition state in dimensionless
coordinatesAH is the heat of reaction, artf is the intrinsic
activation barrier. Marcus suggested that eq 1 was useful for
electron-transfer reactions buiot atom- or ligand-transfer
reactiong Nevertheless after people became interested in the
position of the transition state, MurdoéhSutin22 and Albey?
asserted that eq 1 could also be used to predict the position o
the transition state for atom- and ligand-transfer reactions in
chemical lasers.

Their analysis was based on the curve-crossing model in
Figure 1. The system goes up the reactant potential, crosses al
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Marcus originally derived the Marcus equation to predict Brgnsted coefficients for electron-transfer reactions.
However in the literature it is often assumed that Marcus’ result can be extended to predict positions of the
transition state for atom-transfer reactions. In this paper we use ab initio methods to examine the potential
energy surface and transition state of a series of hydrogenolysis reactions of the fér@HHCH,R — CH,4

+ *CH.R, with R= H, CHs, CFk;, CN, NH,, and GHg, in order to see if the Marcus equation can be extended

to atom-transfer reactions. The calculations show that the molecular orbitals of the system look “reactant-
like” moving up the potential energy surface toward the transition state, and then switch to “product-like”
moving down to products, in qualitative agreement with what one would expect from the Marcus equation.
However, the curve crossing from “reactant-like” to “product-like” molecular orbitals does not occur at the
saddle point in the potential energy surface. Rather the curve crossing occurs at a point part way down to
products. Also most of the barrier to reaction is associated with rearrangements of the electron clouds due
to Pauli repulsions when the reactants come together and not with the bond destruction and bond formation
processes. These rearrangements are not considered in the Marcus equation. We do not yet know if our
results are special to the reactions here or are general. However, it does appear that some key physics is
missing when one extends the Marcus model to atom- or ligand-transfer reactions. One can represent the
key physics with a modified bond additivity potential, however.
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Figure 1. Change in the energy of the system as the reaction proceeds,
after MurdocR!' and Marcug?

So far very little work has been done to critically test the
extension of the Marcus Brgnsted formulation to the prediction
of the position state in ligand-transfer reactions. Lee and Masel,
Yamataka et alt,and Shaik and Schlegehave used eq 1 to
estimate Brgnsted coefficients in atom-transfer reactions. How-
{ever, little work has been done to see if the formulation can
predict the position of the transition state for atom- or ligand-
transfer reactions.

In this paper we will use ab initio calculations to estimgite
?t the transition state and compare to eq 1.

the curve crossing, and then goes down the product potential.Background

First we need a suitable definition to quantify At this point
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Pross and Shalsuggest that in principle many different reaction
parameters such as the extent of bond-forming, bond-breaking,
charge transfer, solvation, and others can each be used to define
the reaction coordinate, and one can use the definitigntof
define a value ofy*. The only desired constraint that Pross
and Shaik impose is thatbe 0 at the position of reactants, 1.0
at the position of the products, and vary smoothly in between.
Still, in practice most investigators use the extent of bond-
forming and bond-breaking to define a numeral valug. &or
example if one adopts Pauling'definition of bond order,

)

¥ (Miller) = 7)

Still, eqgs 6, 7, and 8 were derived using formulations similar to
those of Marcus. One does not know a priori whether these
formulations are correct.

In the previous literature, there have only been a few attempts
to use ab initio calculations to test eqs 1 and86 Several
years ago, Yamatakat al. did Hartree-Fock calculations and
found little agreement betwegf calculated from the transition-
state geometry and that calculated from eq 1. More recently
Lee and Masélused high-level calculations to test egs 1, 6,
and 7 for an atom-transfer reaction and found reasonable
agreement betweeyt estimated from ab initio calculations and
that from Bockris’ result (eq 6) but little agreement wih
estimated from the Marcus equation, eq 1, or Miller's result,
eq 7. In particular, Lee and Masel were examining cases with
late or very late transition states, but the Marcus equation and
Miller’s results predicted early transition states for these cases.
whereny is the bond order of the forming bond, whitg is the Lee and Masel suggested that the differences arose because the

bond order of the breaking bond at the position of the transition Pauli repulsions, which are ignored in the derivation of the
state. Equation 3 is the definition of the position of the transition Marcus equation, played a key role in determining the position

n=exp((r — re)/a)

wherereqis the equilibrium bond length of the bond aads a
scaling constant, one can define a reaction coordinate via

y(Pauling)= ()

state used most often in the literature. Marcus (personal Of the transition state.
communication, 1996, 1997) suggests that this definition is
appropriate for his model.

One can also easily define a satisfactory definitioy based
on the atomic coordinates:

(r* - reo)b
- reo)b +(r* = reo)f

where subscript b and f denote the breaking and the forming
bonds, respectively. Although other properties of transition state
(such as the extent of bond bending, the amount of electronic
population in certain orbitals, the extent of orbital overlap) can

also be used in the definition of reaction coordinate, none of
them have been used extensively in the context of reaction
coordinate.

We also need to note that alternatives to the Marcus equation
have been suggested in the literature. In 1955, Hamfond
proposed a simple qualitative postulate to relate the position of
the transition state to the energetics of the reaction. Hammond’s
ideas were based on earlier work of Brgn8tadd Lefflerl®
According to Hammond's postulatg® is given by

_ (Ea - Eeox)
AH

HGeom)= @

+

®)

where E; is the activation barrier to the reactioR; is the
intrinsic activation energy, andH is the heat of reaction. In
the electrochemical literature, BocKridias shown that one can
determine the value of* from

' (Bockris)= (6)

3
§+3)

In this paper, we will do calculations to see if the Marcus
equation can be used to predict the position of the transition
state for ligand-transfer reactions. We consider the series of
reactions

H+ C,H,R— CH,+ CH,R (8)
with R = H, CHs, NH,, CN, CFK;, and GHs. This set of
reactions was chosen because our previous work has shown that
the Pauli repulsions are particularly strong in the reaction

D + C,Hg— DCH; + CH,4 (9)

Therefore, one might think that the reactions in eq 9 would show
interesting deviations from the Marcus result. In this paper, ab
initio calculations have been used to see if the Marcus
formulation applies to this system. We also test Murdoch’s idea

that we can represent the transition state as a curve crossing
between two parabolic potential energy manifolds.

Calculational Methods

Ab initio MO calculations were carried out for all the
molecules and transition states. Geometries of equilibrium
molecules were fully optimized at the second-order Metler
Plesset perturbation theory (MP2) using a 6-31G(d) basis set
with d-polarization function added to the heavy atoms. To
optimize the geometry of the transition states, polarization
functions (p-type) were also added to the hydrogen atoms due
to the large G-H bond distance at the transition state. In all
the calculations, spin projectithwas used to correct for spin
contamination in open shell structures. Frequency calculations
were performed to check for the imaginary frequencies of the
transition states.

Single-point calculations at fourth-order MoliePlesset

whereS and$S; are the average slopes of the intrinsic reaction perturbation theory (MP4SDTQ) and quadratic configuration
coordinate (IRC) curve on the reactant side and on the productinteraction (QCISD(T)) were then carried out to determine the
side, respectively. energetics of the molecules and transition states, except for R
From purely mathematical considerations, Mitfeand Ag- = CgHs. These high-level calculations were done using the
mon3 have independently shown that, assuming certain general6-311G(d,p) basis set. We also did calculations using the G-2
properties of the potential energy profile, the position of theoryl®> where the zero-point energies and other high-level
transition state can be given by corrections were included in the calculations. Due to the large
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§ - Figure 3. Geometries of the transition state found in the calculations
2 . reported in this paper.
g 1.625 : TABLE 1: Comparison of the Equilibrium Bond Lengths
o | with the Bond Lengths at the Transition State
B transition state  equilibrium
7 R group method/basis sets rcH ree fch  fec
1.0 LA A E I B B R 1T T T
0.5 105 50 575 35 H UMP2/6-31G 1.383 1.875 1.095 1.545
HoC Distance (Angst UMP2/6-31G(d) 1.383 1.875 1.090 1.526
gstrom)

_ _ _ UMP2/631-G(d,p) 1.369 1.853 1.085 1.523
Figure 2. Potential energy surface for the reactiontHC,Hg — CH, UMP2=(FULL)/6-31G(d,p) 1.368 1.852 1.090 1.524
+ CHj calculated at the MP2/6-31G(d,p) level. UMP2/6-31G(d,p) 1.367 1.851 1.086 1.525

] ] ] UMP2/6-311G(d) 1.375 1.871 1.089 1.528
calculations for R= CgHs, the energetics were determined at UMP2/6-311G(d,p) 1.364 1.855 1.090 1.529
the PMP2/6-33G(d,p) level. UMP2/6-311-G(d,p) 1.364 1.852 1.090 1.529

To determine the slopes of the potential energy profiles as UMP2/6-311+G(d,p) 1.363 1.852 1.090 1.529
mentioned in eq 2, intrinsic reaction coordinate (IRC) calcula- CHs  UMP2/6-31G 1.448 1915 1095 1545

16 . . . UMP2/6-31G(d,p) 1.373 1.847 1.085 1.524
tionst® were carried out to trace the mass-weighted reaction path UMP2=(FULL)/6-31G(d,p) 1.372 1.846 1.090 1.525
leading down from the transition state toward the reactants and UMP2/6-3H-G(d,p) 1.372 1.845 1.086 1.525
products. This was done using a 643%(d,p) basis set. The UMP2/6-311G(d,p) 1.367 1.848 1.090 1.528
slopes at the inflection points of the energy were then used in NHz  UMP2/6-31G 1489 1.929 1.095 1.510
eq 2 UMP2=(FULL)/6-31G(d,p) 1.402 1.849 1.090 1.526

) . . . UMP2/6-3H-G(d,p) 1.400 1.844 1.086 1.490
We used two different approximations to calculate the UMP2/6-31G 1.377 1.897 1.095 1.552
intrinsic activation energies. The first is based on the Hammond UMP2=(FULL)6-31G(d,p) 1.349 1.838 1.090 1.530
postulate UMP2/6-3H-G(d,p) 1.348 1.837 1.086 1.531
CK UMP2/6-31G 1.430 1.910 1.095 1.544
o _ A UMP2=(FULL)/6-31G(d,p) 1.363 1.845 1.090 1.523
Exe = Eas = AH (10) UMP2/6-31-G(d,p) 1.365 1.851 1.086 1.525
_ o CeHs  UMP2/6-3HG(d,p) 1.368 1.832 1.086 1.53
The second is based on Marcus’ additivity postulate
TABLE 2: Geometries of Selected Molecules, Selected at
. 1. . UMP,=(FULL)/6-31G(d), Compared with Established
Exs = E(EAA + Egg) (11) Experimental Values from the CRC Handbook

Lee and Masel

molecule structures optimized value  exptl values
where E3, and Egg are the activation barriers for the corre-  ~cpy. Ren 1.078 1.08
sponding symmetric bond scissions. In the cases considered cH, Rew 1.090 1.0870
here egs 10 and 11 gave the same result to within 1 kcal/mol. C;Hs Rec 1.524 1.5351
All of the calculations in this paper were done with the ECH 1111-293 1111-?9;40
7 8 . .
GAUSSIAN927 and GAUSSIAN948 programs. CaHe RCCCCH 1505 1530
1.096 1.107
Results Sccic 112.4 112
Figure 2 shows a potential energy surface for the reaction H CoHsNH, Ren 1.464 1473
+ CyHg — CH4 + CHgs. In the calculation the hydrogen radical C,H:CN @z ig%g i%g
was assumed to approach the {CHi,R molecule along the CHsCFs Rer 1.353 1.339
C—C axis. We have also looked at cases where the radical C,Hs(CsHs)  Rec(aromatic) 1.398 1.399

attacks perpendicular to the<C bond or at other angles, but
found that the activation barrier is higher along these other
pathways.

Figure 2 looks standard for ay3 reaction. There is a small

aValues from methylamine, CMIH,. ® Values from acetonitrile,
CH:CN. ¢ Values from fluoroform, CHE 9Values from benzene,

(CsHs).

van der Waals attraction on the reactant side of the molecule set, the optimized bond lengths are shorter. The p-polarization
and a fairly symmetric barrier. function added to the hydrogen appears to be essential when
Figure 3 shows the geometries of the transition-state structuresdoing geometry optimization of the transition states. The
calculated at PMP2/6-31G(d,p) level of theory. Table 1 lists optimized structures compare favorably to the available experi-
the bond lengths of the forming and the breaking bonds at the mental values obtained from the CRC Handbébks shown
transition states, along with their corresponding equilibrium bond in Table 2.
lengths in the reactants and products. We have also included The energetics of the reactions calculated at the MP4(SDTQ)
the structures optimized using other basis sets wherever possiblend QCISD(T) level are summarized in Table 3. It is found
for comparison. It is found that in general, with a larger basis that a higher level of calculation results in more exothermic
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TABLE 3: Total Energies of the System Calculated at Various Levels of Theory
energies (hartrees)

R group level of calculation H {15 H--CHs--CH:R CH, CH.R Ea (kcal/mol) AH (kcal/mol)
H PMP2/6-31G-(d,p) —0.49981 -—79.57089 —80.00725 —40.37923 -—39.709 17 39.81 —-11.11
UMP4(SDTA)/6-31G-(d,p) —0.49981 —79.61452 —80.04794 —40.40503 —39.73077 41.66 —13.47
QCISD(T)/6-31GH(d,p) —0.49981 -79.61579 —80.05258 —40.40589 —39.73224 39.55 —-14.14
G2 theory —0.50000 -—79.63086 —80.07131 —40.41088 —39.74509 37.37 —15.76
CHs; PMP2/6-31G-(d,p) —0.499 81 —118.766 05 —119.20440 —40.37923 —78.90507 38.56 —11.57
UMP4(SDTQ)/6-31G-(d,p) —0.49981 —118.827 27 —119.26263 —40.40503 —78.94459 40.44 —14.14
QCISD(T)/6-31G(d,p) —0.499 81 —118.82879 —119.26743 —40.40589 —78.946 63 38.39 —-15.01
G2 theory 0.500 00 —118.85580 —119.30072 —40.41088 —78.969 25 34.56 —15.27
NH; PMP2/6-31G-(d,p) —0.499 81 —134.78617 —135.28848 —40.37923 -—94.93576 36.08 —18.20
UMP4(SDTQ)/6-31G-(d,p) —0.49981 —134.84186 —135.28120 —40.40503 —94.969 35 37.95 —20.52
QCISD(T)/6-31GH(d,p) —0.49981 —134.84289 —135.28576 —40.40589 —94.97126 35.73 —21.62
G2 theory —0.500 00 —134.89457 —135.34047 —40.41088 —95.01858 33.95 —21.89
CN PMP2/6-31G-(d,p) —0.49981 —171.60175 —172.04305 —40.37923 —131.746 10 36.71 -14.92
UMP4(SDTQ)/6-31G-(d,p) —0.49981 —171.66086 —172.097 37 —40.40503 —131.777 87 39.72 —13.95
QCISD(T)/6-31GH(d,p) —0.49981 —171.65759 —172.09987 —40.40589 —131.78318 36.10 —19.88
G2 theory —0.500 00 —171.747 62 —172.19398 —40.41088 —131.869 46 33.66 —20.53
CFR  PMP2/6-31G-(d,p) —0.49981 —416.01715 —416.45479 —40.37923 —376.148 52 39.01 —6.77
UMP4(SDTQ)/6-31G-(d,p) —0.49981 —416.08450 —416.51933 —40.40503 —376.193 90 40.78 —9.18
QCISD(T)/6-31GH(d,p) —0.499 81 —416.08122 —416.51916 —40.40589 —376.191 29 38.83 —10.14
G2 theory —0.500 00 —416.358 89 —40.410 88 —376.464 98 —10.65
CgHs PMP2 —0.498 23 —309.89199 —310.32486 —40.36595 —270.059 02 41.01 —21.81
heats of reactions and lower activation energies. This is mainly -79.96
due to the fact that the inclusion of a higher level of correlation } R=H
energies stabilizes the transition state and the product radicals
more than the reactants. -79.97 7

Figure 4 shows the results of the IRC calculations. In an
IRC calculation, the transition state is arbitrarily set to zeroon _
the reaction coordinate and the reaction coordinate is normalized § =~ 7991
so that the reactants are toward the negative direction while the
products are toward the positive direction. The slopes of the ;;D
potential energy curves were determined and the values were g
used in eq 2 to calculate the positions of the transition state. “

A summary of the positions of the transition state calculated
from various equations described earlier is provided in Table
4. The ab initio calculations show that the reactions considered
here all have late transition stateg ¢~ 0.5-0.54); however, 8001 i . i
the Marcus equation and Miller's equation predict an early A 0 1
transition statey* ~ 0.39-0.46). Bokris’s method predicjg
of 0.55-0.59, i.e., later transition states than the ab initio
calculations. 119.15

Figure 5 shows the actual transition-state position as a R=CH3
function of AH/EZ. The lines are the prediction of egs 1, 7, 21,
and 11, while the points are the ab initio calculations. We -119.16
included both the forward and reverse reactions to get a
consistent picture. Generally, there is little correlation between
the Marcus equation and Miller’'s equation and the ab initio
results. Equations 21 and 22, which we will discuss later in
the paper, fit much better, however.

79.99

-80.00 -

Mass Weighted Reaction Coordinate

-119.17 A

-119.18

Energy (Hartree)

Discussion

It is interesting to try to understand why the deviations from
the Marcus equation exist. Marcus, Albey, and Murdoch
provide several different derivations of the Marcus equation.
However, the one that is the most relevant to the results in this 11920 . .
paper is Chen and MurdocR&derivation based on the bond - 0 1
additivity model. Recall that in the bond additivity model one ' .Mass Weighted Reaction Coordinate

calcu_lates theV(rcw, rec), the potential energy surface for Figure 4. Energy of the reaction in Figure 2 plotted in intrinsic reaction
reaction 8, from coordinates.

-119.19 4

—

V(rens fed) = AEc(%CC) + AE (%CH) + AEc(%CC) is the change iBcc(%CC), the energy of the-€C
Veaullew f'eo) (12) bond that breaks during the reactigxEcH(%CH) is the change
in Ecu(%CH), the energy of the €H bond that forms during
wherercy andrcc are the lengths of the-€H and C-C bonds; the reaction%CH and%CC are the Pauling bond orders of
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TABLE 4: Comparison of the Transition-State Positions 41
Calculated by a Variety of Methods
F F F + F 40 |
R group (Bockris) (Marcus) (Miller) (Pauling) (Geom)
H 0.59 0.46 0.42 0.54 0.54 £
CH; 0.58 0.46 0.42 0.53 0.53 J
NH, 0.55 0.44 0.38 0.51 0.51 2 ol
CN 0.61 0.44 0.39 0.54 0.54 g
Ck 0.59 0.47 0.44 0.54 0.54 =
CeHs 0.45 0.39 0.52 0.52 L8 ¥r
0.55 S
/r =
Equ 2l . st A Ab Tnitio
1%}
=
.9 [ 34 ) 1 I I 1 | 1 L 1 ! 1 1 1
= - Miller’s 22 -20 -18 -16 -14 -12 -10
=]
8 ‘1 Equation A H , kecal/mole
< Ab Tnitio 4
£ 05
= st
D
<
: "/ ™ of
= | Equ 22 o gL Marcus
R || 3
=
Marcus g M = 8F
Equation 2 ol
045 L o
0.4 05 0.6 2 ok
0.5+ AI;I =)
8Ea -11
Ab Initi
Figure 5. Comparison of the values gf estimated from eq 3 with 12 muhio
those estimated from the Marcus equation, eq 1, and the new model,
egs 21 and 22. The points are the ab initio calculations. The lines are B T T e T
the predictions of the various models.
A H, kcal/mole

Figure 6. Plot of the activation barriers predicted by the Marcus

the C-H and C-C bond, respectively; anbpaufcr, rec) is guation and ab initio calculations as a function of the heat of reaction.

the Pauli repulsion, which keeps the reactants apart. Chen and”
Murdocht showed that iEcc andEcy are parabolic and ¥payi 120
is small and constant, then the Marcus equation, eq 1, follows

directly.

One can calculateecc and Ecy exactly from ab initio 100
calculations for isolated methane and ethane moleciésy, EB
ree) is available from Figure .2 Vpyyi can then be calculated E 80
exactly from eq 12. g

Figure 7 shows a plot oEcy and Ecc as a function of the ke 60
bond orders of the €H and C-C bonds. The plots look as g

expected in both cases. The bond energy increases rapidly ats
small bond orders and then levels off at bond orders close to 1. °
Such a result is typical of what one would expect for a species &
that forms only a single bond. 20 1
What is surprising though is what happens when one plugs
the numbers from Figure 7 into eq 12. Figure 8 shows a plot 0 — . .
of the various terms in eq 11 for a reaction that follows the 0.0 0.2 04 0.6 08 1.0
minimum energy reaction pathway for the reaction in Figure 2.
Notice that in the initial part of the reaction the surmBet and Pauling’s bond order
Ecw actually decreases as the reaction proceeds; that is, we gekigure 7. Plot of the energy of the €C bond in ethane and the-G
more energy back from forming the hydrogezarbon bond than  bond in methane as a function of the Pauling bond order of the bond.
we lose in breaking the carberarbon bond. Note that
according to Figure 6, it does not cost much energy to stretch
the C-C bond slightly, and according to Figure 7, one gains
considerable energy in forming a small fractionatig bond.
The result is that the first two terms in eq 11 produce a net  Our calculations show that in our case there is no barrier from
attraction between the hydrogen and the ethane. In contrast, inAEcc andAEcy. Rather the main barrier arises frovagay In
the literature it is usually assumed that the sumA&c and the previous literature people mentidfpayi When they are

O CHBond
@® CCBond

AEcy produces a repulsive interaction and therefore a barrier
to the reaction.
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Figure 8. Plot of the various terms in eq 11 as the reaction proceeds.

discussing barriers to reaction, but usually assumeMpal; is
small and Morse-like. However in our cadés,y;is huge.

PhysicallyVpayiis associated with the rearrangement of the
outer electrons before bonds begin to break. During reaction
9, an incoming hydrogen approaches an ethane alon@he

axis of the ethane, as shown in Figure 3. When the reactants

first come together, there is an electreglectron repulsion

between the electron on the incoming hydrogen and the electrons

on the hydrogen on the methyl group. That repulsion makes
Vpauli large.
It is interesting to look at a molecular orbital diagram to see

J. Phys. Chem. A, Vol. 102, No. 13, 1998337

Figure 10 shows how the 34—1s state changes during the
reaction. The 1s state starts out spherical, while thg, 3¥ate
starts out withCz, symmetry. There is a completely symmetric
center lobe and two outer lobes. The outer lobes actually have
3-fold symmetry, but if you view them in cross section along
the plane of one of the-€H bonds, the outer lobes look kidney
shaped, with more electron density along theHCbond in the
plane of the paper than between the-l& bonds above and
below the paper.

Now when the reaction proceeds, the;gAnd 1s orbitals
significantly distort. The left lobe in the 34 orbital shrinks,
while the hydrogen 1s orbital changes shape significantly.
Notice that much of the orbital distortion occurs at small Pauling
bond orders. For example, Figure 9b is a case where the
incoming hydrogen atonsi2 A away from the carbon. When
the C—H is 2 A away from the carbon, the-€H bond has a
Pauling bond order of only 0.05, while the carbeararbon in
the ethane still has a bond order of 0.95. However, the 1s orbital
in the hydrogen and the leftmost lobe of the;3Arbital on the
ethane have distorted significantly. Energetically, there is a net
repulsion of almost 30 kcal/mol. Interestingly, the center lobe
of the 3A orbital (i.e., the carboncarbon bond) has hardly
changed. Physically the electron in the incoming hydrogen atom
repels the electrons in the GHgroup. This produces a
significant Pauli repulsion even before the carboarbon bond
scission begins.

Similarly, at the end of the reaction, there is a Pauli repulsion

between the reactants that occurs after all of the bonds in the
system have reached their equilibrium bond lengths. Figure
10 shows an orbital interaction diagram for that case. A planar

how the Pauli repulsions arise. People usually do not presentMethy! radical has electrons in the 2AE, and 14" states,

orbital diagrams in HartreeFock (HF) type calculations due
to a uniqueness problem. If two occupied states have the sam
symmetry, then any sum of the two orbitals also satisfies the

Shroedinger equation. As aresult in general, one cannot define

the orbitals uniquely in HF calculations. Nevertheless, one can
create unique orbital diagrams, if one has a very symmetric
system so that only a few states have the same symmetry, an

then one uses core potentials and other tricks to get unique

diagrams.
In our case, there were only thregyArbitals in the problem,
and we could get a unique orbital diagram by maximizing the

electron density in the bonds. More details on how one gets a

unique diagram are given in Lee and Ma%kel.
Figure 9 shows a plot of the energies of the various MOs of

hydrogen and ethane, calculated using a Mullikin state decom-

position ignoring the core states. Ethane Bggsymmetry. In
ethane the 34y, 2A:q 2Ay, 1E, 3Aig and 1E states are
occupied, while the 34 and higher are empty. Hydrogen has

while the methane has electrons in the;2hd 1T states. The

ol T2 states split into an Astate and two E states i@y

symmetry. When the methyl radical reacts with the methane,
the 2A; state in the methyl radical reacts with the ;:28tate in

the methane to produce a bonding and antibonding pair with
energies similar to those one would expect. Similarly the E

gtates on the methyl interact with the E states on the methane

to form a bonding and antibonding pair. The #tates on the
methyl group and that on the methane also interact to form a
bonding and antibonding pair. However, when we calculate
the energies for a situation where there is a very long carbon
carbon bond, the bonding A T,) state lies well above the;T
state in methane. The result is a substantial Pauli repulsion.

Figure 10g shows an orbital diagram for that case. Notice
that the molecular orbitals in the methyl group and methane
are significantly distorted, yet the electron density between the
carbon and the hydrogen has hardly changed, and there is no
evidence for a bonding interaction between the carbons. In this

a single occupied 1s orbital and some empty 2s and 2p statesexample, the Pauling bond order for the-B is still 0.98 and
When the hydrogen first approaches the ethane, the mainthe Pauling bond order for the carbecarbon is only 0.1.

interaction is between the 1s orbital in the hydrogen and the

Physically the electrons on the methyl are being repelled by

3Ay, orbital in the ethane. There is a bonding state which we the electrons on the hydrogens in the methane; this produces a

will label 3A;4+1s and an antibonding state which we will label
3A14—1s. Figure 9 shows the energy level we calculated for
the 3Ag+1s and the 34—1s states using the Mullikin state

incoming hydrogen was stiP A away from the carbon. In
this case the 3fyt+1s bonding level of the system has only
been stabilized by 0.02 hartrees. One does not want to

large orbital distortion before bond scission begins.
There is another interesting detail in Figure 10. Focus for

the moment on the center lobe on the;gAtate on ethane.
decomposition. The calculation was done for a case where theNotice how the center lobe distorts.

The lobe starts out
symmetric and provides a continuous bond between the two
carbon atoms in the ethane. The lobe distorts, but even-at

0.3, the lobe bridges between the two carbons, implying that

overinterpret these changes due to the well-known uniquenesghere is still an intact carbercarbon bond. However, there is

problem mentioned above. Still there is a 28 kcal/mol repulsive
interaction, which is surprising at such a small reaction
coordinate.

an important change betwegn= 0.31 andy = 0.73. Aty =
0.73 the lobe no longer extends from one carbon to the next.
Rather, there is a node between the two carbons, which implies
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Figure 9. Plot of the change in the orbital energies as the reaction proceeds calculated with the Mullikin orbital decomposition.

that there is an antibonding interaction between the two carbons.i.e. that the energy looks parabolic in the reaction coordinate,
That antibonding interaction grows as the reaction proceeds.does not work for atom- or ligand-transfer reactions. When
Similarly, the hydrogerrhydrogen bond is antibonding at the one assumes that the system follows a parabolic potentjal in
reactants and then switches to being bonding at the products.one is in effect assuming that there are only small variations in
Figure 11 shows a blow up of the transition between “reactant- the energy of the system until one starts to stretch the various

like” and “product-like” molecular orbitals. Interestingly, the
switch in the character of the-€H and C-C bonds occurs at
x = 0.56 (i.e., a point later than the transition state).

Now it is interesting to compare these results to the
predictions of the Marcus model and Miller’s results. Recall
that Murdochs’ and Albey’s extension of the Marcus equation

bonds, i.e. &/dy = 0 at the reactants and products, arfady
grows as one stretches the bonds. This might be true for a
simple electron-transfer reaction. However, in the cases con-
sidered in this paper,Hidy is large near the reactants and
products and decreases moving toward the transition state. This
is exactly the opposite of what the Marcus equation assumes.

to atom-transfer reactions assumes that the reaction starts goin@€onsequently, the Marcus equation does a poor job in predicting
up a “reactant-like” curve and then switches at a curve crossingthe position state for atom-transfer reactions.

and goes down a “product-like” curve as indicated in Figure 1.
Our results in Figure 10 show that the MOs start out “reactant-
like,” with an intact C-C bond. However, during the course
of the reaction the MOs switch to “product-like” MOs with an

Now, while that is probably a surprising result to many
people, perhaps it should not be. After all, Martshowed
that eq 1 would not be expected to work for atom-transfer
reactions. People use eq 1 anyway, but it is not surprising that

intact C—H bond. Interestingly, the transition state (i.e., the it does not work considering that Marcus’ derivation is not
saddle point on the potential energy surface) does not correspondappropriate for atom-transfer reactions.
to the curve crossing. Rather the saddle point on the potential
energy surface occurs gt= 0.547, while the curve crossing A New Model
occurs aty = 0.56.

The other key piece of physics, which is ignored when one
tries to extend the Marcus model to atom-transfer reaction, is hqtential.  According to Polayni and co-workers, one can
that there are big orbital distortions before the reaction begins. approximateV(rcy, o), the potential energy surface for a

Recall that ay = 0'05, the energy of the system has gone up ligand-transfer reaction, as the sum of the Morse potential plus
by 28 kcal/mol. Yet Figure 10b shows that the carboarbon a repulsive term due to the Pauli repulsions, i.e.

is largely intact. Figure 8 suggests that the bond distortions
are producing a barrier of more than 50 kcal/mol. This barrier
is ignored in the Murdoch extension of the Marcus equation to
atom- and ligand-transfer reactions. Consequently, Marcus’
equation does not correctly predict either the energy or the value
of y at the transition state for ligand-transfer reactions. wherewcy andwcc are the bond energies of the-€l and C-C
Another way to look at this result is that the basic assumption bondsrcy andrcc are the lengths of the-€H and C-C bonds,
in extending the Marcus equation to atom-transfer reactions, rccequandrch,equare the equilibrium bond lengthey and o,

One can derive a formulation that works based on Polayni
and co-worker¥ extension of the LondonrEyring—Pauling

V(e Fed) = Wer{ €Xpeu(rep equ— Ter) — 1}2 — Wy T
We{ exp@, (Fecequ™ fed) — 1% - Wee t Vpaui (13)
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are constants, andeayiiis the strength of the Pauli repulsion.

Fpdrogean 1k Err“:""u
For the derivation here it is useful to approximate the Pauli
repulsion as a simple exponential: a
5 )~
Veaui = VoEXP(-04l oy — 04l ) (14) -
=it &

whereVy, o, anday are constants. Combining eqgs 13 and 14

and substituting the Pauling bond order for thel€and C-C b
bonds into the equation yields R @
) ) FIE TSI ] .
V(rem Ted = Wen((Ne)™ — 1)° + Wec((ned ™ — 1)° — ity
Wep — Wee + Vp(”CH)pCHqCH(nc&pCHqCH (15)
[+
wherency and nec are the Pauling bond order for the—El
and C-C bonds and
P o,a
Pcn = 2 - g
2 Pming) o BT
_ (13 16) Troredon i
Och = o (
Oy
Oon =~ L
CH o, gl
2Fauling) = £.73

Vp = VOeXp(aBrCH,equ—i_ a4rCC,eq|)

In our examplepcc and pen are approximately 1.0, whilgec

andqcy are less than 1; that is the Pauli repulsion starts before e

bond formation. HaErtur
Figure 12 shows a plot of the potential energy surface * ™*@=*®

calculated from eq 15. Figure 12 looks quantitatively similar

to the potential energy surface in Figure 2, which suggests that

the approximation in eq 15 does a reasonable job of fitting the
potential energy surface.

Equation 15 also does a reasonable job of fitting the results
in Figure 7. In particular the sum of the first two terms in eq

15 decreases as the reaction proceeds. The actual bond energ' k1A

. . . B 1T,
decreases. There is a barrier only because of the last term in ' Rt
eq 15, i.e. the Pauli repulsion. Figure 10. Changes in the 34—1s orbital as the reaction proceeds

calculated as described in the text.

-

One can derive an equation fof,, andni., the bond order
at the saddle point in Figure 11, by setting/dh = 0 and reaction becomes
solving, the result is

+
Dec— 1 £ Mec  _ (Dec— 1)
(e = DDy~ 1 an R
pon -1 Figure 13 compareg calculated from the Marcus equation,
(ne) m (18) eq 1, toy* calculated from egs 21 and 22. Notice that when
ceren Jcc = qen = 1.0, the behavior looks quite like that predicted
with by the Marcus equation. In particulgt shifts monotonically
asAH, changes. The slope is slightly different than predicted
from the Marcus equation, but the differences are small.
However, whermgcc = 0.77, the results change. The Pauli
repulsions shift the transition state toward the methane product.
There is a subtlety created by the definitionydf Notice, that
if we run the forward reaction

AccV - -
Dec = 2?; pngccc(QCc 1)n?§_l|-|(QCH 1 (19)
CcC

qCHVp — _
on= 2W_n?:CCC(qCC 1)n’(3:6'_|‘-|(qCH 1) (20)
CH

If pcc = pch = 1, the position of the transition state becomes H+CHR—HCH; +R

the transition state shifts toward the methane. Methane is the

s Ny (Bey— 1 Fig i i -
qE= = (21) product sg¢* is increased. However, if we consider the reverse
Nec+ney  Dent Dec—2 reaction

Similarly the position of the transition state for the reverse HCH; + R—H + CHR (23)
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Figure 13. Comparison ofy* calculated from the Marcus equation
II*”“""’. with »* calculated for eqs 21 and 22: (@c = 1.0, (b)gcc = 0.77,
pPaulng; =053 Pcc = PcH = Gcn = 1.0.
clusters, just as we expect from egs 21 and 22. Equations 21
and 22 fit the ab initio calculations much better than the Marcus
equation. Clearly, then, one can get a reasonable fit from the
data including the Pauli repulsions into the model.
lf'q‘f_r:'l'n’g Conclusions

In summary then, we find that the Marcus equation does not
do a good job of predicting the position of the transition state
for ligand-transfer reactions. The Marcus equation considers
Figure 11. Series of orbital diagrams near the curve crossing in Figure the energies associated with the formation and destruction of
10. The light colored orbitals are positive lobes, and the dark colored bonds, but not the Pauli repulsion, which occurs before bond
orbitals are negative lobes. formation begins. In the reactions considered here, the Pauli
repulsions of these bonds play a dominant role. We also showed
that if one explicitly considers the Pauli repulsions, one can
derive an equation that fits the data. The conclusion from our
study is that Pauli repulsions are quite important in atom- and
ligand-transfer reactions and so one must consider them to get
a suitable model.
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